
Research Article
Network Pharmacology-Based Approach to
Investigate the Mechanisms of Hedyotis diffusaWilld. in the
Treatment of Gastric Cancer

Xinkui Liu, Jiarui Wu , Dan Zhang, KaihuanWang, Xiaojiao Duan,
Ziqi Meng, and Xiaomeng Zhang

Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine,
Beijing 100102, China

Correspondence should be addressed to Jiarui Wu; exogamy@163.com

Received 4 February 2018; Revised 27 March 2018; Accepted 1 April 2018; Published 2 May 2018

Academic Editor: Yoshiki Mukudai

Copyright © 2018 Xinkui Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Hedyotis diffusa Willd. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC).
However, its curative mechanism has not been fully elucidated.Objective. To systematically investigate the mechanisms of HDW in
GC.Methods. A network pharmacology approachmainly comprising target prediction, network construction, andmodule analysis
was adopted in this study. Results. A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network
analysis showed that CA isoenzymes, p53, PIK3CA, CDK2, P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and
VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW
probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide
excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway.
Conclusions. This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly
associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.

1. Introduction

Gastric cancer (GC) is one of the most common gastroin-
testinal malignancies and among the most frequent causes
of cancer-related deaths internationally [1]. Although the
past decades have seen a decline in morbidity and mortality,
as well as a significantly increased 5-year relative survival
rate, GC remains a serious public health problem with a
dismal survival rate in most regions of the globe [2–5].
Surgical resection is the primary curative therapy for GC,
and perioperative chemotherapy and adjuvant chemotherapy
as well as adjuvant chemoradiotherapy have been adopted
to improve the therapeutic effects of resectable GC [6, 7].
Although the treatment landscape of GC has stridden into
the molecular and personalized medicine epoch with the
introduction of targeted agents and immunotherapies [8],
chemotherapy remains the mainstay of palliative therapy
for metastatic GC patients [6]. However, GC usually shows
resistance to chemotherapeutics which exhibit a relatively

short control of this disease and correlated symptoms, and
the survival of most of these patients is less than one year
[9, 10]. Furthermore, the application of chemotherapy often
produces adverse events such as fatigue, nausea, pancytope-
nia, and significant gastrointestinal toxicity [11, 12].

As a significant component of complementary and alter-
native medical systems, traditional Chinese medicine (TCM)
has been widely applied to clinically treat cancers for thou-
sands of years in Asian nations, particularly in China and
Japan [13].Withmounting clinical practice in cancer compre-
hensive treatment, TCMhas been confirmed to be efficacious
not only in alleviating uncomfortable symptoms induced by
surgery and chemotherapy, such as fatigue, pain, emesis, diar-
rhea, and pancytopenia, but also in improving tumor-related
symptoms, immune functions, and survival benefits [14–
17]. According to a network pharmacology-based study on
TCM against stage IV gastric adenocarcinoma, the patients
who received TCM treatment exhibited a longer median
survival time (18months) than those without TCM treatment
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(9 months), with 63.8% 1-year and 17.6% 2-year survival rates
[18]. Hedyotis diffusa Willd. (HDW), an annual herb of the
Rubiaceae family, is widely distributed in subtropical area of
the world [19, 20]. HDW as a medicinal herb was recorded
in Chinese pharmacopoeia (2015 edt), with the functions of
inducing diuresis to reduce edema, clearing away the heat evil
and detoxification, and promoting blood circulation to arrest
pain [20, 21]. Clinically, the herb has often been applied as a
critical element in many TCM formulae for the treatment of
various cancers, includingGC [20, 21].Meanwhile, the results
of a latest retrospective matched-cohort study presented
that HDW was the most commonly prescribed single herb
for treating GC patients and complementary TCM therapy
enhanced the overall survival of patients with GC in Taiwan
[22]. Although multiple anticancer activities of HDW have
been widely reported [23–27], the molecular mechanisms of
HDW against GC remain largely unclear.

TCM exhibits therapeutic efficacy by the synergistic
effects of multicomponent, multitarget, andmultipathway, so
it is relatively difficult to analyze the intricate mechanisms
of TCM merely using traditional experimental approaches
[28, 29]. Network pharmacology has emerged as a powerful
method incorporating systems biology, bioinformatics, and
polypharmacology [30–33], which not only clarifies the com-
plicated interactions among genes, proteins, and metabolites
associatedwith diseases anddrugs on a network level, but also
coincides with the holistic and systemic views of TCM theory
[34]. Thus, we have implemented the network pharmacology
approach in an attempt to understand and evaluate the
underlying mechanisms of HDW against GC. The workflow
of network pharmacology-based study of HDW was shown
in Figure 1.

2. Materials and Methods

2.1. Data Preparation

2.1.1. Herbal Compounds in HDW. To collect the herbal com-
pounds of HDW, we applied Traditional Chinese Medicine
Systems Pharmacology Database [35] (TCMSP, http://lsp
.nwu.edu.cn/), a unique system pharmacology platform
devised for Chinese herbal medicines, and Traditional Chi-
nese Medicine Integrated Database [36] (TCMID, http://
www.megabionet.org/tcmid/), which offers a large amount
of information regarding formulae and their chemical ingre-
dients. Ninety-three chemical ingredients of HDW were
retrieved from the two databases (Table S1), among which
some compounds did not have structural information and
some were repeated data. Because the targets of the com-
pounds without precise structural information cannot be
successfully predicted, these chemicals were removed after
deleting the repeated data. Eventually, 42 herbal compounds
were gathered (Table S2).

2.1.2. Compound Targets for HDW. The simplified molecular
input line entry specification (SMILES) information of all
the 42 active compounds was imported into SuperPred
[37] (http://prediction.charite.de/), a prediction webserver
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Figure 1: Workflow for HDW in treating GC.

for AnatomicalTherapeutic Chemical (ATC) code and target
prediction of compounds.Then 32 herbal chemicals returned
their known or predicted targets, and only human targets
were reserved. Finally, the information of compound targets
was obtained (Table S3).

2.1.3. GC Targets. The human genes associated with GC
were acquired from four resources. (1) Therapeutic Target
Database [38] (TTD, https://db.idrblab.org/ttd/) is a database
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to provide information about the known and explored ther-
apeutic protein and nucleic acid targets, the targeted disease,
pathway information, and the corresponding drugs directed
at each of these targets. We screened TTD with a keyword
“gastric cancer” and obtained 12 known GC-related targets.
(2) Online Mendelian Inheritance in Man [39] (OMIM,
https://omim.org/) is a comprehensive, authoritative, and
timely knowledgebase of human genes and genetic disorders
compiled to support human genetics research and education
and the practice of clinical genetics. We searched OMIM
with the keyword “gastric cancer” and collected 12 known
GC-related targets. (3) Pharmacogenomics Knowledgebase
[40] (PharmGKB, https://www.pharmgkb.org/) is a resource
that collects, curates, and disseminates information about the
impact of human genetic variation on drug responses. We
searched PharmGKB with a keyword “stomach neoplasms”
and acquired 37 known GC-related targets. (4) DigSee
[41] (http://210.107.182.61/geneSearch/) is a search engine to
find explicit association between genes and cancer through
biological events. We retrieved DigSee with the keyword
“gastric cancer” and in order tomake the resultsmore credible
we selected 14 known GC-related targets reported by more
than or equal to 20 academic papers. After redundancy
was deleted, 66 known GC-related targets were eventually
collected (Table S4).

2.1.4. Protein-Protein Interaction (PPI) Data. The PPI data
came from the Search Tool for the Retrieval of Interacting
Genes (STRING) database [42] (https://string-db.org/, ver.
10.5), which provides information regarding the predicted
and experimental interactions of proteins. The prediction
method of this database comes from neighborhood, gene
fusion, cooccurrence, coexpression experiments, databases,
and text mining. Furthermore, the database defines PPI with
confidence ranges for data scores (low confidence: scores >
0.15; medium > 0.4; high: >0.7). In the present study, PPIs
with the combined scores > 0.7 were reserved for further
research.

2.2. Network Construction. Network construction was per-
formed as follows: (1) Compound-compound target network
was established by connecting the herbal compounds and
their corresponding targets; (2) PPI network of compound
targets was built by connecting the compound targets and
other human proteins that interacted with them; (3) PPI
network of GC targets was constructed by linking the known
GC-related targets and other human proteins that interacted
with them; (4) PPI network of targets for HDW against GC
was built by intersecting the two networks of (2) and (3).

All the networks were visualized utilizing Cytoscape [43]
(http://cytoscape.org/, ver. 3.5.1). The topological features
of interaction networks were evaluated by calculating three
indices with a Cytoscape tool NetworkAnalyzer, including
degree [44], betweenness centrality [45], and closeness cen-
trality [46]. Degree is defined as the number of edges to
node i. Betweenness is used for describing the number of
shortest paths between pairs of nodes that run through node
i. Closeness stands for the inverse of the sum of the distances

from node i to other nodes. The higher the three quantitative
values of a node are, the greater the importance of the node
in the network is.

2.3. Module Analysis. The Cytoscape plugin Molecular
Complex Detection (MCODE) [47] was applied to ana-
lyze clustering modules in the PPI network. In addi-
tion, on the basis of the information acquired from
Gene Ontology [48] (GO, http://www.geneontology.org)
and Kyoto Encyclopedia of Genes and Genomes [49]
(KEGG, http://www.genome.jp/kegg/), the GO terms and
KEGG pathways enriched by genes in the functional mod-
ules were analyzed by employing Database for Annota-
tion, Visualization and Integrated Discovery [50] (DAVID,
https://david.ncifcrf.gov/, ver. 6.8) online tool. Meanwhile,
the screening principle for significant biological functions
and pathways was defined as follows: 𝑝 value < 0.01 and false
discovery rate (FDR) < 0.01.

3. Results and Discussion

3.1. Compound-Compound Target Network. The compound-
compound target network consisted of 385 nodes (32 com-
pounds, 339 compound targets, and 14 compound/GC tar-
gets) and 733 edges (Figure 2, Table S5). Meanwhile, net-
work analysis showed an average degree value of 22.91 per
compound, demonstrating the multitarget treatment charac-
teristics of HDW. Quercetin (degree = 203) and coumarin
(degree = 123) exhibited far higher degree values than the
other ingredients. Consequently, we contemplated that the
top two chemicals probably functioned as critical elements
in treating GC. Modern studies have displayed that quercetin
exerts powerful antiproliferative and proapoptotic effects on
various GC cells by means of multiple mechanisms [51],
and quercetin intake is negatively associated with the risk
of gastric adenocarcinoma [52]. Moreover, recent evidence
implicates that quercetin can also restrain the growth of
human GC stem cells [53]. Coumarin is a type of coumarins
whose skeletons are characterized by 2H-chromen-2-ones
[54]. Coumarins and their derivatives widely found in
diverse natural products have become drugs on account of
their extensive biological activities like antibacterial, antioxi-
dant, anti-inflammatory, and anticancer effects [54–57]. The
present research discovered that it interacted with seven
known GC-related targets, including cytochrome P450 2A6
(CYP2A6), cytochrome P450 3A4 (CYP3A4), epidermal
growth factor receptor (EGFR), receptor tyrosine-protein
kinase erbB-2 (ERBB2), vascular endothelial growth factor
receptor 1 (FLT1/VEGFR1), mitogen-activated protein kinase
1 (MAPK1), and prostaglandin G/H synthase 2 (PTGS2),
which suggested that coumarin may exert some positive
impacts on the treatment of GC. Previous studies have
demonstrated that CYP2A6 is an important enzyme respon-
sible for metabolizing coumarin to 7-hydroxycoumarin [58].
Moreover, the latest pharmacological study presents that total
coumarins extracted from HDW induce the apoptosis of
myelodysplastic syndrome SKM-1 cells by activating caspases
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Figure 2: Compound-compound target network (blue hexagons represent compounds of HDW; yellow circles represent compound targets;
red circles represent compound/GC targets).

and suppressing multiple proteins in phosphatidylinositol 3-
kinase (PI3K)/AKT pathway [24]. However, relevant reports
investigating the therapeutic efficacy of coumarins and their
derivatives on GC and the regulatory effect of coumarin on
CYP3A4, EGFR, ERBB2, VEGFR1, and MAPK1 as well as
PTGS2 remain deficient nowadays.Therefore, more pharma-
cological experiments are warranted to validate our compu-
tational analysis-based results.

Similarly, many of the potential targets were also con-
nected to multiple herbal ingredients, which reflected the
synergistic or additive effects of these ingredients in treating
GC. For example, the members of the carbonic anhydrase
(CA) family like CA7, CA9, CA12, CA3, CA6, CA14, CA13,
CA2, andCA1were targeted by numerous compounds, which
implied that CA isoenzymes probably served as the key
targets of HDW. It has long been acknowledged that CAs
are extensively expressed in the gastrointestinal tract and
play crucial roles in multiple physiological and pathological
processes, such as transport of carbon dioxide, pH regulation,
ion transport, formation of stomach acidity, bone resorption,
calcification, and tumorigenesis [59, 60]. ConsiderCA9,CA2,
and CA1. The expression status of CA9 is closely related to
the progression ofGC and the regulatorymechanisms of CA9
are relatively complicated [61, 62]. For CA1 and CA2, they are
also correlated with gastrointestinal neoplasms and CA2 has
been proposed to be a biomarker for gastrointestinal stromal
tumors [63]. Furthermore, the compound-compound target
network displayed that the chemicals in HDW not only
acted on 14 known GC-related proteins but also linked
with the other 339 human proteins, which signified that the

bioactive compounds of HDW possibly affected diverse
targets synergistically and therefore produced potential ther-
apeutic efficacy for other diseases besides GC.

3.2. PPI Network of Compound Targets. Protein-protein
interaction (PPI) networks have been proven to be conducive
to decipher the multiple interactions of diverse proteins
in some complex diseases including cancer [64, 65]. Thus,
the PPI network of compound targets with 409 nodes (293
compound targets, 4 GC targets, 14 compound/GC targets,
and 98 other human proteins that interacted with compound
targets or GC targets) and 4392 edges (Figure 3, Table
S6) was constructed to gain insights into the interactive
effects of compound targets modulated by HDW at a system
level. In this network, there were 14 intersection targets
between compound targets and known GC-related targets,
namely, cellular tumor antigen p53 (TP53), phosphatidyli-
nositol 4,5-bisphosphate 3-kinase catalytic subunit alpha
isoform (PIK3CA), MAPK1, heat shock protein HSP 90-
alpha (HSP90AA1), EGFR, apoptosis regulator Bcl-2 (BCL2),
PTGS2, DNA topoisomerase 2-alpha (TOP2A), CYP3A4,
ERBB2, CYP2A6, VEGFR1, DNA topoisomerase 1 (TOP1),
and multidrug resistance protein 1 (ABCB1). Therefore, the
results clearly presented that HDW exerted notable efficacy
on GC probably by affecting the whole biological network
comprising the 14 targets, in which TP53 (degree = 106) and
PIK3CA (degree = 85) should be identified as the pivotal
targets in view of their far higher degree values than the
other proteins. P53 protein as a tumor suppressor has well
established roles in regulating key biological processes like
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Figure 3: PPI network of compound targets (yellow circles represent compound targets; green circles represent GC targets; red circles
represent compound/GC targets; orange circles represent other human proteins that interacted with compound targets or GC targets).

DNA repair, cell cycle arrest, senescence, and apoptosis, and it
is altered in more than half of all human cancers, suggesting
its significance in preventing cancer [66–68]. About 50% of
GC patients have been reported to carry the genetic and
epigenetic alterations that lead to the inactivation of p53
[69–71], and TP53 mutations appear late in precancerous
stages of GC bringing about the ultimate transition to cancer
[72, 73]. As for PIK3CA, it encodes the key enzymatic
subunit p110𝛼 of PI3K [74], and PIK3CA functioning as an
oncogene plays a key role in GC [75]. Overexpressed PIK3CA
promoted the invasion and proliferation of GC cells [76],
and the upregulation of PIK3CA in GC tissues was possibly
relevant to lymph node metastasis [76, 77]. Consequently,
our findings implied that the components of HDW might
produce therapeutic effects on GC by recovering the tumor
suppressor activity of p53 and inhibiting the expression level
of PIK3CA.

3.3. PPI Network of GC Targets. To discover the relationship
between the known GC-related proteins and other human
proteins that interacted with them, the PPI network of GC
targets was built with 159 nodes (59 GC targets and 100 other
human proteins that interacted with GC targets) and 1432
edges (Figure 4, Table S7). Based on the median values for
degree, betweenness centrality, and closeness centrality that
were 16, 0.00194113, and 0.41253264, respectively, we identi-
fied 23 highly connected nodes with degree > 32, between-
ness centrality > 0.002, and closeness centrality > 0.413 as
significant GC-related targets. Intriguingly, most of the 23
targets were tightly related to cell cycle, such as TP53, cyclin-
dependent kinase 7 (CDK7), cyclin-dependent kinase 2
(CDK2), breast cancer type 1 susceptibility protein (BRCA1),
G1/S-specific cyclinD1 (CCND1), andCDK-activating kinase
assembly factor MAT1 (MNAT1). Obviously, our network
analysis revealed that these proteins correlated with cell
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Figure 4: PPI network of GC targets (red circles represent GC targets; yellow circles represent other human proteins that interacted with GC
targets).

cycle might play a pivotal role in the tumorigenesis and
progression of GC. Consistent with our present study, past
findings have confirmed that GC is commonly featured
by dysregulated expression of cyclins and other proteins
associated with cell cycle [78]. Take CDK2 and cyclin D1
as examples. It is well known that CDKs require binding
of cyclins to stimulate cell cycle progression [79, 80], and
either continuous proliferation or irregular reentry into cell
cycle often occurs due to frequent dysregulation of certain
cyclin/CDK complexes caused by tumor-related mutations
[81]. Relevant studies have revealed that CDK2 positively
modulates the cell cycle of GC, and it can be aberrantly
activated by increased malignancy and cancer cell invasion
[82]. With regard to cyclin D1, it functions as a critical
regulatory factor in the proliferation, apoptosis, invasion,
metastasis, and immune escape of tumor cells [83]. And
accumulated evidencemanifests that overexpressed cyclin D1
is intimately correlated with the progression of GC [84, 85].

3.4. PPI Network of Targets for HDW against GC. In order
to further unveil the potential pharmacological mechanisms

of HDW against GC, we constructed the PPI network
of targets for HDW against GC by intersecting the two
networks displayed in Sections 3.2 and 3.3. The network
comprised 68 nodes (12 compound targets, 4 GC targets, 14
compound/GC targets, and 38 other human proteins that
interacted with compound targets or GC targets) and 474
edges (Figure 5, Table S8). Based on the median values
for degree, betweenness centrality, and closeness centrality
that were 14, 0.00526562, and 0.463673375, respectively, we
identified nodes with the three topological feature values
that were higher than the corresponding median values
as major targets. Twenty-three targets were reserved after
our screening, namely, p53, proliferating cell nuclear anti-
gen (PCNA), CDK2, RAC-alpha serine/threonine-protein
kinase (AKT1), PIK3CA, HSP90AA1, replication factor
C subunit 4 (RFC4), cyclin-dependent kinase inhibitor
1B (CDKN1B/p27Kip1), proepidermal growth factor (EGF),
EGFR, BCL2, cyclin D1, vascular endothelial growth fac-
tor A (VEGFA), serine/threonine-protein kinase mTOR
(MTOR), MAPK1, replication factor C subunit 3 (RFC3),
replication factor C subunit 5 (RFC5), G2/mitotic-specific
cyclin B1 (CCNB1), replication factor C subunit 2 (RFC2),
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E3 ubiquitin-protein ligaseMdm2 (MDM2), nitric oxide syn-
thase, endothelial (NOS3), TOP2A, and cyclin A2 (CCNA2).

We could clearly find out that most of these proteins
were strongly associated with cell cycle, like CDK2, p27Kip1,
cyclin D1, cyclin B1, and cyclin A2. Take p27Kip1, cyclin
B1, and cyclin A2 as examples. P27Kip1, an inhibitor of cell
cycle, blocks the activation of cyclin E-CDK2 or cyclin D-
CDK4 complexes, hence inhibiting G1-S phase transition
during the cell cycle progression [86–88].Meanwhile, P27Kip1
is inversely related to GC and its decreased expression is
reported as a negative prognostic marker in GC [89–91].
Cyclin B1 regulates the cell cycle transition from G2 to
M phase [92] and plays key roles in cell differentiation,
apoptosis, and metastasis [93–97]. And its expression might
be relevant to the poor outcome of GC patients [98–101].
With regard to cyclin A2, a core regulator of cell division
cycle, it binds and activates kinases that regulate S phase
and the transition from G2 to M phase [102], and aberrant
cyclin A2 expression in human cancers is often correlated
with cell proliferation [103, 104]. Furthermore, some proteins
were closely related to apoptosis, including TP53, AKT1,
BCL2, and MAPK1. And some proteins were intimately
relevant to angiogenesis, such as VEGFA and PIK3CA.
Consider AKT1, BCL2,MAPK1, andVEGFA. AKT1 is among
AKT family members and is detected to be amplified in
gastric adenocarcinomas [105, 106]. AKT is a downstream
effector of PI3K [107], and the PI3K/AKT signaling pathway
participates in apoptosis inhibition and angiogenesis [108].
AKT suppresses apoptosis by inhibiting the actions of BAD
and caspase-9 that are related to apoptosis [107]. Moreover,

AKT is also intimately relevant to angiogenesis and the
invasion of cancer cells into adjacent tissues through VEGF
and MMP [109, 110]. As for BCL2, it plays a crucial role not
only in promoting cellular survival and inhibiting apoptosis
but also in suppressing cellular proliferative activity [111–
113]. BCL2 has been reported in GC, and the overexpression
of BCL2 serves as an early event in gastric tumorigenesis
[114]. Nevertheless, the results from numerous researchers
that described the relationship between BCL2 expression
and prognosis in GC were sometimes discrepant [115].
With respect to MAPK1, also called extracellular signal-
regulated kinase 2 (ERK2), it is a member of the MAP
kinase family. The activation of MAPKs regulates diverse
cellular processes like proliferation, differentiation, mitosis,
and apoptosis [116]. In addition, previous findings showed
that miR-197 possibly affected the sensitivity of fluorouracil
treatment in a human GC cell line via acting on MAPK1
[117]. As for VEGFA, this protein shows prominent activity
in inducing angiogenesis, and VEGFA inhibition has become
one of prevalent treatment strategies for multiple cancers
[118].TheVEGFApathway that is critical in promoting tumor
angiogenesis serves as a validated target in advanced GC, and
the correlation between VEGFA levels and overall survival
or stage of GC has been proven [118]. Above all, there is
no doubt that cell cycle, apoptosis, and angiogenesis act as
vital processes in the development and progression of GC.
Accordingly, our present study showed that the simultaneous
manipulation of a set of targets associated with cell cycle,
apoptosis, and angiogenesis might chiefly account for the
curative mechanisms of HDWonGC. In agreement with our
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study, relevant pharmacological findings suggested that total
flavones extracted from HDW could significantly inhibit the
proliferation of human GC cells and cause cell cycle arrest in
G0/G1 phase, eventually inducing the apoptosis of humanGC
cells [119]. Moreover, HDW polysaccharides notably induced
the apoptosis of human GC cells and exhibited synergy
when combined with cisplatin, the mechanisms of which
may be correlated with their effects of downregulating BCL2
expression and upregulating p53 expression levels [120].

3.5. Module Analysis. Because clustering modules might
represent some pivotal characteristics of PPI networks and
probably contain specific biological significance [121], we
analyzed the PPI network of targets for HDW against GC by
using MCODE and four modules were detected (Figure 6).
Meanwhile, we further explored the biological processes,
molecular functions, and signaling pathways enriched by
the targets in the functional modules in order to clarify
the integral regulation of HDW for the treatment of GC.
With regard to the GO enrichment analysis, Figure 7 and
Table S9 showed the GO terms significantly enriched by the

targets in different modules. Module 1 was highly associ-
ated with translesion synthesis, nucleotide excision repair,
and phosphatidylinositol and its kinase-mediated signaling.
Module 2 was highly associated with response to stress and
unfolded protein binding. Module 3 was highly associated
with cell division. Module 4 was highly associated with
calmodulin binding.Thus, we speculated thatHDWprobably
exerted its pharmacological effects on GC by simultaneously
involving these biological processes andmolecular functions.
Nucleotide excision repair (NER), for example, functions
as an indispensable and versatile system in maintaining
the stability and integrity of the genome, monitoring and
repairing multiple DNA damage [122–124]. However, defects
in NER would bring about enhanced genomic instability,
and unrepaired DNA damage might thereby increase the
genetic susceptibility to GC, resulting in the initiation of
gastric carcinogenesis [125]. Meanwhile, the disruption of
NER systemwould also alter the chemotherapeutic sensitivity
and prognosis of patients with GC [126].

With regard to KEGG enrichment analysis, Figure 8 and
Table S10 showed the KEGG pathways significantly enriched
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by the targets in different modules, and Figure 9 showed
the targets of four modules found in the KEGG pathway of
gastric cancer (hsa05226). As shown in Figure 8, the targets in
different modules were mapped to 48 signaling path-
ways which can be classified into five categories: human

diseases (22/48), environmental information processing
(11/48), organismal systems (8/48), genetic information pro-
cessing (4/48), and cellular processes (3/48). Thus, our
findings showed that HDW might integrate diverse sig-
naling pathways to modulate cancers, signal transduction,
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endocrine system, nervous system, replication and repair, cell
growth and death, and cellular community. In addition, we
also found that the signaling pathways remarkably enriched
by the potential targets of HDW were strongly associated
with cell differentiation, proliferation, migration, invasion,
apoptosis, cell cycle, and angiogenesis, most of which play a
pivotal role in the development and progression of cancers,
such as pathways in cancer (hsa05200), PI3K/AKT signaling
pathway (hsa04151), VEGF signaling pathway (hsa04370),
mammalian target of rapamycin (mTOR) signaling pathway
(hsa04150), apoptosis (hsa04210), Ras signaling pathway
(hsa04014), and cell cycle (hsa04110). We thereby speculated
that the underlying mechanisms of HDW for treating GC
may be mainly attributed to its synergistical modulation on
the pathways relevant to cancers. As shown in Figure 9,
the PI3K/AKT signaling pathway should be identified as the
most critical pathway regulated by HDW. The PI3K/AKT
signaling pathway is an important growth regulatory pathway
that mediates multiple cellular and molecular functions
like cell growth, proliferation, metabolism, and survival, as
well as angiogenesis, and it is frequently dysregulated in
many types of cancers, promoting the tumorigenesis and
therapy resistance [127–131]. The PI3K/AKT pathway plays
essential roles in the development of GC, and the aber-
rant activation of this pathway tends to occur in advanced
GC patients, with a lower survival rate [131–137]. Previous
pharmacological studies confirmed that the chemical com-
pounds of HDW could inhibit the activation of PI3K/AKT
pathway by significantly downregulating the expression of
PI3K, AKT, and phosphorylated-AKT (p-AKT), inducing the
apoptosis of fluorouracil resistant colorectal cancer cells and
human myelodysplastic syndrome cells [24, 138]. Blocking
angiogenesis has been widely believed to be one of the

efficacious treatment choices for inhibiting tumor growth
andmetastasis considering the essential roles of angiogenesis
for tumor growth [139]. However, the long-term use and
therapeutic efficacy of angiogenesis inhibitors were largely
limited by drug resistance and the cytotoxicity against
non-tumor-associated endothelial cells [140]. Fortunately,
4-vinylphenol isolated from HDW has been reported to
possess antiangiogenic effects in human endothelial cells,
the mechanisms of which may be related to its inhibition
on PI3K/AKT, ERK, and p38 signaling pathways, as well as
its downregulation on the expression of VEGFR [141]. The
other pharmacological study disclosed that HDW extract
could inhibit tumor angiogenesis by downregulating the
expression of VEGFA in human colon carcinoma cells [140].
It has been universally accepted that the deregulation of cell
cycle progression is among the pivotal hallmarks of cancer
[142], and the G1/S transition chiefly regulated by cyclin D1
and CDK4 is one of the two main checkpoints that control
cell cycle progression [143–145]. Overwhelming evidence has
shown that HDW extract could cause cell cycle arrest at the
G0/G1 phase, inhibiting the proliferation and inducing the
apoptosis of multiple tumor cells, like human colon carci-
noma cells, human hepatocellular carcinoma cells, human
leukemia cells, and so on [146–148]. To sumup, we speculated
that HDW might produce the therapeutic effectiveness on
GC by regulating pathways intimately correlated with prolif-
eration, apoptosis, angiogenesis, and cell cycle, in which the
PI3K/AKT signaling pathway played more important roles.
Nevertheless, we notice that pharmacological findings on
HDW for treating GC have been rarely reported. Therefore,
more experiments are needed in the future to validate the
results of our present study.
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4. Conclusions

In the present study, we applied a network pharmacology
approach to predict, elucidate, and confirm the potential
mechanisms of HDW on GC by integrating target predic-
tion, network construction, and module analysis. Firstly, a
total of 353 targets affected by 32 bioactive compounds in
HDW were obtained, demonstrating a synergistic treatment
strategy of TCM featured by multicomponent, multitarget,
and multipathway. Secondly, the analysis of compound-
compound target network and PPI network of compound
targets displayed that quercetin and coumarin probably
served as critical constituents in HDW, and CA isoenzymes
and p53 as well as PIK3CA might be the key targets of HDW.
Thirdly, the analysis of PPI network of GC targets showed
that the proteins related to cell cycle regulation may play an
essential role in the tumorigenesis and progression of GC.
Fourthly, the analysis of PPI network of targets for HDW
against GC indicated the therapeutic effectiveness of HDW
in GC possibly owing to its simultaneous regulation of the
targets relevant to cell cycle, apoptosis, and angiogenesis, such
as CDK2, p27Kip1, cyclin D1, cyclin B1, cyclin A2, p53, AKT1,
BCL2, MAPK1, VEGFA, and PIK3CA. Finally, according
to the results of GO and KEGG enrichment analyses, the
targets regulated by HDW were significantly correlated with
multiple biological pathways, namely, NER, apoptosis, cell
cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling
pathway, and Ras signaling pathway, which were involved
in the primary pathological processes of GC like apoptosis
resistance, dysregulated cell cycle, abnormal differentiation,
uncontrolled proliferation, migration, and invasion, as well
as angiogenesis.

In summary, the present study provides a systematic
method to disclose that the pharmacological mechanisms of
HDW on GC might be strongly associated with its synergic
modulation on apoptosis, cell cycle, differentiation, prolif-
eration, migration, invasion, and angiogenesis. Moreover,
we hope that our study will be beneficial for providing
clues to understand and evaluate the synergetic effects of
TCM in controlling complex diseases and for facilitating
the application of network pharmacology in exploring the
potential mechanisms of anticancer TCMs. Nonetheless,
further experiments are demanded to validate our findings
since this study was performed based on data analysis.
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